Program Design

Invasion Percolation: Tuning

Copyright © Software Carpentry 2010
This work is licensed under the Creative Commons Attribution License
See http://software-carpentry.org/license.html for more information.
Our program works correctly
Our program works correctly

At least, it passes all our tests
Our program works correctly
At least, it passes all our tests

Next step: figure out if we need to make it faster
Our program works correctly
At least, it passes all our tests
Next step: figure out if we need to make it faster

Spend time on other things if it's fast enough
How do we measure a program's speed?
How do we measure a program's speed?

Average of many running times on various grids
How do we measure a program's speed?

Average of many running times on various grids.

How do we *predict* running time on bigger grids?
How do we measure a program's speed?
Average of many running times on various grids

How do we *predict* running time on bigger grids?

Use asymptotic analysis
How do we measure a program's speed?
Average of many running times on various grids

How do we predict running time on bigger grids?

Use asymptotic analysis

One of the most powerful theoretical tools in computer science
$N \times N$ grid has N^2 cells.
N×N grid has N^2 cells

Must fill at least N to reach boundary
N×N grid has \(N^2\) cells

Must fill at least \(N\) to reach boundary

Can fill at most

\[(N-2)^2+1 = N^2-4N+5\]
N×N grid has N^2 cells
Must fill at least N to reach boundary
Can fill at most $(N-2)^2+1 = N^2-4N+5$
For large N, this is approximately N^2
Program looks at N^2 cells to find the next cell to fill.
Program looks at N^2 cells to find the next cell to fill.

Best case: $N \cdot N^2$ or N^3 steps in total.
Program looks at N^2 cells to find the next cell to fill.

Best case: $N \cdot N^2$ or N^3 steps in total.

Worst case: $N^2 \cdot N^2$ or N^4 steps.
Program looks at N^2 cells to find the next cell to fill.

Best case: $N \cdot N^2$ or N^3 steps in total.

Worst case: $N^2 \cdot N^2$ or N^4 steps.

Ouch
Averaging exponent to $N^{3.5}$ doesn't make sense...
Averaging exponent to $N^{3.5}$ doesn't make sense...

...but it will illustrate our problem
Averaging exponent to $N^{3.5}$ doesn't make sense...
...but it will illustrate our problem

<table>
<thead>
<tr>
<th>Grid Size</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>T</td>
</tr>
<tr>
<td>2N</td>
<td>11.3 T</td>
</tr>
<tr>
<td>3N</td>
<td>46.7 T</td>
</tr>
<tr>
<td>4N</td>
<td>128 T</td>
</tr>
</tbody>
</table>
Averaging exponent to $N^{3.5}$ doesn't make sense...

...but it will illustrate our problem

<table>
<thead>
<tr>
<th>Grid Size</th>
<th>Time</th>
<th>Which Is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>T</td>
<td>1 sec</td>
</tr>
<tr>
<td>2N</td>
<td>11.3 T</td>
<td>11 sec</td>
</tr>
<tr>
<td>3N</td>
<td>46.7 T</td>
<td>47 sec</td>
</tr>
<tr>
<td>4N</td>
<td>128 T</td>
<td>2 min</td>
</tr>
<tr>
<td>10N</td>
<td>3162 T</td>
<td>52 min</td>
</tr>
<tr>
<td>50N</td>
<td>883883 T</td>
<td>1 day</td>
</tr>
<tr>
<td>100N</td>
<td>10^7 T</td>
<td>115 days</td>
</tr>
</tbody>
</table>
Idea #1:
Why are we looking at all the cells?
Idea #1:
Why are we looking at all the cells?
Just look at cells that *might* be adjacent
Idea #1:
Why are we looking at all the cells? Just look at cells that *might* be adjacent.

Keep track of min and max X and Y and loop over those.
But on average, the filled region is half the size of the grid.
But on average, the filled region is half the size of the grid.

\[
\frac{N}{2} \cdot \frac{N}{2} = \frac{N^2}{4}
\]
But on average, the filled region is half the size of the grid.

\[\frac{N}{2} \cdot \frac{N}{2} = \frac{N^2}{4} \]

115 days → 29 days
But on average, the filled region is half the size of the grid:

\[\frac{N}{2} \cdot \frac{N}{2} = \frac{N^2}{4} \]

115 days → 29 days

148N×148N grid eats that up
But on average, the filled region is half the size of the grid
\[\frac{N}{2} \cdot \frac{N}{2} = \frac{N^2}{4} \]
115 days → 29 days
148N×148N grid
eats that up

Need to attack the \textit{exponent}
If we just added this cell...
If we just added this cell...
...why check these cells again?
If we just added this cell...
...why check these cells again?

We should already know that these are candidates
If we just added this cell...
...why check these cells again?
We should already know that these are candidates.
This is the only new candidate cell.
Big idea: trade memory for time
Big idea: trade memory for time

Record redundant information in order to save re-calculation
Big idea: trade memory for time
Record redundant information in order to save re-calculation

In this case, keep a list of cells on the boundary
Big idea: trade memory for time
Record redundant information in order to save re-calculation
In this case, keep a list of cells on the boundary
Each time a cell is filled, check its neighbors
Big idea: trade memory for time
Record redundant information in order to save re-calculation
In this case, keep a list of cells on the boundary
Each time a cell is filled, check its neighbors
If already in the list, do nothing
Big idea: trade memory for time
Record redundant information in order to save re-calculation
In this case, keep a list of cells on the boundary
Each time a cell is filled, check its neighbors
If already in the list, do nothing
Otherwise, add to list
Big idea: trade memory for time
Record redundant information in order to save re-calculation
In this case, keep a list of cells on the boundary
Each time a cell is filled, check its neighbors
If already in the list, do nothing
Otherwise, add to list
Insert into list so that low-valued cells at front
Big idea: trade memory for time
Record redundant information in order to save re-calculation
In this case, keep a list of cells on the boundary
Each time a cell is filled, check its neighbors
If already in the list, do nothing
Otherwise, add to list
Insert into list so that low-valued cells at front

Making it easy to choose next cell to fill
List of cells on edge is initially empty

edge = []
List of cells on edge is initially empty

Fill center cell and add its neighbors

deedge = [(1,4,3), (8,3,4), (9,4,5), (9,5,4)]
List of cells on edge is initially empty

Fill center cell and add its neighbors

edge = [(1, 4, 3), (8, 3, 4), (9, 4, 5), (9, 5, 4)]
Take first cell from list and fill it

edge = [(8,3,4), (9,4,5), (9,5,4)]
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>-1</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>-1</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Take first cell from list and fill it

Add its neighbors to the list

```
edge = [(2,5,3), (5,3,3), (8,4,2), (8,3,4), (9,4,5), (9,5,4)]
```
Take, fill, and add again

edge = [(5, 3, 3), (5, 5, 2), (6, 6, 3), (8, 4, 2), (8, 3, 4), (9, 4, 5), (9, 5, 4)]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>-1</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>6</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Take, fill, and add again

Don't re-add cells that are already in the list

\[
\text{edge} = [(5,3,3), (5,5,2), (6,6,3), (8,4,2), (8,3,4), (9,4,5), (9,5,4)]
\]
In case of ties, find all cells at the front of the list with the lowest value...

```
edge = [(5, 3, 3), (5, 5, 2), (6, 6, 3), (8, 4, 2), (8, 3, 4), (9, 4, 5), (9, 5, 4)]
```
In case of ties, find all cells at the front of the list with the lowest value...

...and select and fill one of them

game = [(3, 5, 1), (5, 3, 3), (5, 5, 2), (6, 6, 3), (8, 4, 2), (8, 3, 4), (9, 4, 5), (9, 5, 4)]
How quickly can we insert into a sorted list?
def insert(values, new_val):
 '''Insert (v, x, y) tuple into list in right place.'''
 i = 0
 while i < len(values):
 if values[i][0] >= new_val[0]:
 break
 values.insert(i, new_val)
How quickly can we insert into a sorted list?

```python
def insert(values, new_val):
    '''Insert (v, x, y) tuple into list in right place.'''
    i = 0
    while i < len(values):
        if values[i][0] >= new_val[0]:
            break
    values.insert(i, new_val)

    Works even if list is empty...
```
How quickly can we insert into a sorted list?

def insert(values, new_val):
 '''Insert (v, x, y) tuple into list in right place.'''
 i = 0
 while i < len(values):
 if values[i][0] >= new_val[0]:
 break
 values.insert(i, new_val)

 Works even if list is empty...

 ...or new value greater than all values in list
If list has K values...
If list has K values...

...insertion takes on average K/2 steps
If list has K values...

...insertion takes on average K/2 steps

Our fractals fill about $N^{1.5}$ cells...
If list has K values...

...insertion takes on average K/2 steps

Our fractals fill about $N^{1.5}$ cells...

...and there are as many cells on the boundary as there are in the fractal...
If list has K values...
...insertion takes on average K/2 steps
Our fractals fill about $N^{1.5}$ cells...
...and there are as many cells on the boundary as there are in the fractal...

...so this takes $N^{1.5} \cdot N^{1.5} = N^3$ steps
If list has K values...
...insertion takes on average K/2 steps
Our fractals fill about $N^{1.5}$ cells...
...and there are as many cells on the boundary as there are in the fractal...
...so this takes $N^{1.5} \cdot N^{1.5} = N^3$ steps

Not much of an improvement on $N^{3.5}$
If list has K values...
...insertion takes on average K/2 steps
Our fractals fill about $N^{1.5}$ cells...
...and there are as many cells on the boundary as there are in the fractal...
...so this takes $N^{1.5} \cdot N^{1.5} = N^3$ steps
Not much of an improvement on $N^{3.5}$
But there's a much faster way to insert
To look up a name in the phone book...
To look up a name in the phone book...

...open it in the middle
To look up a name in the phone book...
...open it in the middle
If the name there comes after the one you want,
go to the middle of the first half
To look up a name in the phone book...
...open it in the middle
If the name there comes after the one you want,
go to the middle of the first half
If it comes after the one you want, go to the middle of the second half
To look up a name in the phone book...
...open it in the middle
If the name there comes after the one you want, go to the middle of the first half
If it comes after the one you want, go to the middle of the second half
Then repeat this procedure in that half
To look up a name in the phone book...
...open it in the middle
If the name there comes after the one you want, go to the middle of the first half
If it comes after the one you want, go to the middle of the second half
Then repeat this procedure in that half
How fast is this?
How fast is this?

One probe can find one value
How fast is this?

One probe can find one value

Two probes can find one value among two \((2^1)\)
How fast is this?

One probe can find one value

Two probes can find one value among two (2^1)

Three probes can find one value among four (2^2)
How fast is this?

One probe can find one value

Two probes can find one value among two \((2^1)\)

Three probes can find one value among four \((2^2)\)

Four probes: one among eight \((2^3)\)
How fast is this?
One probe can find one value
Two probes can find one value among two \((2^1)\)
Three probes can find one value among four \((2^2)\)
Four probes: one among eight \((2^3)\)

\(K\) probes: one among \(2^K\)
How fast is this?

One probe can find one value

Two probes can find one value among two (2^1)

Three probes can find one value among four (2^2)

Four probes: one among eight (2^3)

K probes: one among 2^K

$log_2(N)$ probes: one among N values
Running time is $N^{1.5} \cdot \log_2 (N^{1.5})$.

Program Design

Invasion Percolation

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>7</th>
<th>8</th>
<th>8</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>8</td>
<td>-1</td>
<td>9</td>
<td>-1</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>3</td>
<td>-1</td>
<td>9</td>
<td>-1</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Running time is \(N^{1.5} \cdot \log_2(N^{1.5}) \)

Or \(N^{1.5} \log_2(N) \) if we get rid of constants
That changes things quite a bit

<table>
<thead>
<tr>
<th>Grid Size</th>
<th>Old Time</th>
<th>Which Was...</th>
<th>New Time</th>
<th>Which Is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>T</td>
<td>1 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2N</td>
<td>11.3 T</td>
<td>11 sec</td>
<td>2.8 T</td>
<td>3 sec</td>
</tr>
<tr>
<td>3N</td>
<td>46.7 T</td>
<td>47 sec</td>
<td>8.2 T</td>
<td>8 sec</td>
</tr>
<tr>
<td>4N</td>
<td>128 T</td>
<td>2 minutes</td>
<td>16 T</td>
<td>16 sec</td>
</tr>
<tr>
<td>10N</td>
<td>3162 T</td>
<td>52 minutes</td>
<td>105 T</td>
<td>2 min</td>
</tr>
<tr>
<td>50N</td>
<td>883883 T</td>
<td>1 day</td>
<td>1995 T</td>
<td>33 min</td>
</tr>
<tr>
<td>100N</td>
<td>10^7 T</td>
<td>115 days</td>
<td>6644 T</td>
<td>2 hours</td>
</tr>
</tbody>
</table>
That changes things quite a bit

<table>
<thead>
<tr>
<th>Grid Size</th>
<th>Old Time</th>
<th>Which Was...</th>
<th>New Time</th>
<th>Which Is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>T</td>
<td>1 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2N</td>
<td>11.3 T</td>
<td>11 sec</td>
<td>2.8 T</td>
<td>3 sec</td>
</tr>
<tr>
<td>3N</td>
<td>46.7 T</td>
<td>47 sec</td>
<td>8.2 T</td>
<td>8 sec</td>
</tr>
<tr>
<td>4N</td>
<td>128 T</td>
<td>2 minutes</td>
<td>16 T</td>
<td>16 sec</td>
</tr>
<tr>
<td>10N</td>
<td>3162 T</td>
<td>52 minutes</td>
<td>105 T</td>
<td>2 min</td>
</tr>
<tr>
<td>50N</td>
<td>883883 T</td>
<td>1 day</td>
<td>1995 T</td>
<td>33 min</td>
</tr>
<tr>
<td>100N</td>
<td>10^7 T</td>
<td>115 days</td>
<td>6644 T</td>
<td>2 hours</td>
</tr>
</tbody>
</table>
That changes things quite a bit

And the gain gets bigger as N increases

<table>
<thead>
<tr>
<th>Grid Size</th>
<th>Old Time</th>
<th>Which Was...</th>
<th>New Time</th>
<th>Which Is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>T</td>
<td>1 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2N</td>
<td>11.3 T</td>
<td>11 sec</td>
<td>2.8 T</td>
<td>3 sec</td>
</tr>
<tr>
<td>3N</td>
<td>46.7 T</td>
<td>47 sec</td>
<td>8.2 T</td>
<td>8 sec</td>
</tr>
<tr>
<td>4N</td>
<td>128 T</td>
<td>2 minutes</td>
<td>16 T</td>
<td>16 sec</td>
</tr>
<tr>
<td>10N</td>
<td>3162 T</td>
<td>52 minutes</td>
<td>105 T</td>
<td>2 min</td>
</tr>
<tr>
<td>50N</td>
<td>883883 T</td>
<td>1 day</td>
<td>1995 T</td>
<td>33 min</td>
</tr>
<tr>
<td>100N</td>
<td>10^7 T</td>
<td>115 days</td>
<td>6644 T</td>
<td>2 hours</td>
</tr>
</tbody>
</table>
"Divide and conquer" technique used to insert values into list is called *binary search*
"Divide and conquer" technique used to insert values into list is called *binary search*

Only works if list values are sorted
"Divide and conquer" technique used to insert values into list is called *binary search*. Only works if list values are sorted. But it keeps the list values sorted.
"Divide and conquer" technique used to insert values into list is called *binary search*

Only works if list values are sorted

But it keeps the list values sorted

Python implementation is in `bisect` library
We can do even better
We can do even better

Generating the grid takes N^2 steps

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>7</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
We can do even better

Generating the grid takes N^2 steps

If we fill these cells...

<table>
<thead>
<tr>
<th>5</th>
<th>3</th>
<th>7</th>
<th>2</th>
<th>6</th>
<th>1</th>
<th>1</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>-1</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>6</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>-1</td>
<td>-1</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-1</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
We can do even better

Generating the grid takes N^2 steps

If we fill these cells...

...we only ever look at these cells...

<table>
<thead>
<tr>
<th>5</th>
<th>3</th>
<th>7</th>
<th>2</th>
<th>6</th>
<th>1</th>
<th>1</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>-1</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>6</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>-1</td>
<td>-1</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-1</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
Generating the grid takes N^2 steps.

If we fill these cells...
...we only ever look at these cells...
...so why bother generating values for these ones?
Store grid as a dictionary
Store grid as a dictionary

Keys are (x,y) coordinates of cells
Store grid as a dictionary
Keys are (x,y) coordinates of cells
Values are current cell values
Store grid as a dictionary
Keys are (x,y) coordinates of cells
Values are current cell values

Instead of `grid[x][y]`, use `get_value(grid, x, y, Z)`
Store grid as a dictionary
Keys are (x,y) coordinates of cells
Values are current cell values
Instead of \texttt{grid[x][y]}, use \texttt{get_value(grid, x, y, Z)}

\begin{verbatim}
def get_value(grid, x, y, Z):
 '''Get value of grid cell, creating if necessary.'''
 if (x, y) not in grid:
 grid[(x, y)] = random.randint(1, Z)
 return grid[(x, y)]
\end{verbatim}
Store grid as a dictionary
Keys are (x,y) coordinates of cells
Values are current cell values
Instead of grid[x][y], use get_value(grid, x, y, Z)

def get_value(grid, x, y, Z):
 '''Get value of grid cell, creating if necessary.'''
 if (x, y) not in grid:
 grid[(x, y)] = random.randint(1, Z)
 return grid[(x, y)]

And of course use set_value(grid, x, y, V) as well
Another common optimization
Another common optimization

Lazy evaluation
Another common optimization

Lazy evaluation

Don't compute values until they're actually needed
Another common optimization

Lazy evaluation

Don't compute values until they're actually needed

Again, makes program more complicated...
Another common optimization

Lazy evaluation

Don't compute values until they're actually needed

Again, makes program more complicated...

...but also faster
Another common optimization

Lazy evaluation

Don't compute values until they're actually needed

Again, makes program more complicated...

...but also faster

Trading human time for machine performance
How much work does this save us?
How much work does this save us?

Old cost of creating grid: N^2
How much work does this save us?

Old cost of creating grid: N^2

New cost: roughly $N^{1.5}$
How much work does this save us?

Old cost of creating grid: N^2

New cost: roughly $N^{1.5}$

Difference is not $N^{0.5}$
How much work does this save us?

Old cost of creating grid: N^2

New cost: roughly $N^{1.5}$

Difference is *not* $N^{0.5}$

As N gets large, $N^2-N^{1.5} \approx N^2$
How much work does this save us?
Old cost of creating grid: \(N^2 \)
New cost: roughly \(N^{1.5} \)
Difference is *not* \(N^{0.5} \)
As \(N \) gets large, \(N^2 - N^{1.5} \approx N^2 \)
I.e., without this change, total runtime would be
\(N^2 + N^{1.5}\log_2(N) \approx N^2 \)
Moral of the story:
Moral of the story:

Biggest performance gains always come from changing algorithms and data structures
The story's other moral:
The story's other moral:

Write and test a simple version first,
then improve it piece by piece
(re-using the tests to check your work)
created by

Greg Wilson

June 2010